Globally convergent algorithms for solving unconstrained optimization problems
نویسندگان
چکیده
منابع مشابه
A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملA globally convergent trust-region algorithm for unconstrained derivative-free optimization
In this work we explicit a derivative-free trust-region algorithm for unconstrained optimization based on the paper (Computational Optimization and Applications 53: 527–555, 2012) proposed by Powell. The objective function is approximated by quadratic models obtained by polynomial interpolation. The number of points of the interpolation set is fixed. In each iteration only one interpolation poi...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملGlobally convergent evolution strategies for constrained optimization
In this paper we propose, analyze, and test algorithms for constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, feasibility is firs...
متن کاملGlobally Convergent Newton Algorithms for Blind Decorrelation
This paper presents novel Newton algorithms for the blind adaptive decorrelation of real and complex processes. They are globally convergent and exhibit an interesting relationship with the natural gradient algorithm for blind decorrelation and the Goodall learning rule. Indeed, we show that these two later algorithms can be obtained from their Newton decorrelation versions when an exact matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization
سال: 2012
ISSN: 0233-1934,1029-4945
DOI: 10.1080/02331934.2012.745529